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Chapter 7

TARGET PARAMETER ESTIMATION
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Radio Atmospheric Science Center,
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Abstract

The objective of any radar experiment is to determine as much about the entities

which scatter the radiation as possible. This review discusses many of the various pa-

rameters which can be deduced in a radar experiment, and also critically examines the

procedures used to deduce them. Methods for determining the mean wind velocity, the

RMS fluctuating velocities, turbulence parameters (e.g. C_,e, KM), a_ld the shapes of

the scatterers are considered. Complications with these determinations are discussed. It

is seen throughout that a detailed understanding about the shape and cause of of the

scatterers is important in order to make better determinations of these various quanti-

ties. Finally, some other parameters, which are less easily acquired, are considered. For

example, it is noted that momentum fluxes due to buoyancy waves and turbulence can

be determined, and on occasions radars can be used to determine stratospheric diffusion

coefficients and even temperature profiles in the atmosphere.

1 Introduction

The ultimate aim of any radar experiment is of course to determine information about the

structures which backscatter the radio waves, and the environment in which they exist. For

example, it might be of interest to study the shape of the scatterers, or to differentiate different

types of scatterers or reflectors. It might be of interest to determine the radar cross-section

of the scatterers, or their spatial distribution over the sky. Other desired information might

include the velocity of the scatterers, and information about the spatial and temporal variation

of these velocities. If the radio scatter is due to the turbulence, it might be desirable to measure

the intensity of the turbulence.

The purpose of this article is to discuss ways in which parameters llke these can be de-

termined, and how they can be interpreted. Some of the approximations used in determining

these parameters are also critically examined. Some consideration will be given to experimen-

tal design, and then interpretation of the results. Studies of the parameters evaluated over

long periods of time can give a considerable amount of additional information, over and above

that which can be determined from a few discrete observations, but discussion of this aspect

will not be considered in great detail, due to lack of space.

The paper is organized in such a way that the simplest parameters are discussed first, and

parameters which are more difficult to extract are considered later.

2 Wind vector determination

One of the the simplest and yet most important parameters to determine is the wind speed,

so we shall begin with a brief discussion of its determination, examining in detail some of the
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assumptions made in this evaluation.

There are at least two different approaches to the determination of the mean wind. One uti-

lizes large antenna arrays with correspondingly narrow radiation patterns, and with the beams

pointed in various directions to measure wind speeds; the Doppler shift of the backscattered

signal is utilized for this calculation, and such techniques are called "Doppler Beam Swing-

ing" (DBS) techniques. The second class of method, called spaced antenna methods, utilizes

systems of separated (spaced) arrays; wind speeds are determined by using phase and time

differences between signals received with the arrays. The sets of spaced antenna arrays usually

have smaller physical dimensions than the antenna arrays used in the DBS mode. In some

senses, the techniques which use time delays and the techniques which utilize phase delays can

even be regarded as distinct techniques, and they will be considered somewhat independently

in this paper; however they will both be considered as "spaced antenna" techniques. These

various different approaches will now be discussed.

2.1 Doppler measurements

a

bO--_

C

(a) (b)

c' _

Fig. 1 Principle of Doppler method; off-vertical beam used to

record rate of change of phase of scatterers.

The principleof Doppler determination of the wind speed is to utilizethe change in the

phase of scattered radio waves as a function of time. Itisprobably the most common procedure

currently in use, so some time will be devoted to discussion of this technique.

2.1.1 Basic principles of the Doppler method

As the scatterers move, the path length between the transmitter, scatterer and receiver

changes, and this shows as a change in phase (fig. la). We can think of this as the rota-

tion of the vector in the argand plane (fig. lb). For a monostatic radar, the mean rate of

change of phase is a measure of the mean radial component of the velocity of the scatterers

ViZ.

d¢
< v,ad >= _ < -_- > (1)
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Here, <> represents the average value, averaged over the radar volume and the sampling time,

V,_d is the radial component of the velocity, _ is the radar wavelength, ¢ is the phase, and

d¢/dt is the rate of change of phase. Each scatterer causes its appropriate vector to rotate

at a slightly different frequency, and we can represent this on a spectrum, where each line

corresponds to a different scatterer (fig. 2). Of course it should be borne in mind that in a

real spectrum, it may not be physical to think of e_h separate spectral line as due to such a

scatterer, but for our purposes this is adequate.

w

Frequency of Phasor rotation

Fig. 2

We shall assume for simplicity that the spectral density and frequency of each line is

invariant, so just the phase of the signal from each scatterer changes. If a single phasor at

time t can be described by _o = ao e_t, ( ao =[ _o [) then at time t + 6t it is given by

= a0ei_(t+s0. Given the two phasors, the phase difference can be found by calculating _o°._,

where (*) means complex conjugate. This calculation gives a_e _'_st = a_e _a_. We actually seek

< A¢ > averaged over all the scatterers in the radar volume, but if the phasors all have

equal amplitude, or even more generally the spectrum has a symmetric shape, then we can

say that < A¢ >= ar9{< a2e ia# >), even for large values of A¢. In other words, summing

the phasors and finding the rotation of the resultant gives the same result as averaging the

angles of rotation of each phasor. This is also true even in the presence of a moderate amount

of noise. Hence we will consider averages of a02eia*. This mean value calculated for n phasors

aje i''¢_, (j = 1 to n) is

1 " .
< >=  ;(t)aj(t + st) (2)

j=l

To improve the accuracy, imagine averaging over a reasonable length of time, say at N time

steps tl,t2,...,tk,...,tN , where tk = k6t. Then

< >= E _ (3)
-- j--.l

We can write this as

= j=l j'

since the cross terms in the square brackets of (4) all involve terms llke e-i_J_ei%'t, where

wj y_ w_,, and such terms sum to zero when summed over a period substantially longer than

their beat period. In fact in the case that the time series is Fourier transformed by a discrete
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Fourier transform, all frequencies are harmonically related and so these cross terms summed

over the data length are all exactly zero. But the term _i_1 aj(tk) is simply the value of the

(complex) time series which would be recorded by the radar at time t_, which we will denote

as f(tk), and so (4) can be written as

1 N

< a__'_* >= _ Z: £'(tk)f(t_+,) (5)

which is simply the autocovariance function at the first lag, p(St) say. Thus the mean rate

of change of phase can be found from

< --gK >= ta"-i n_(o(_t)) (6)

where Re means "the real part of" and Im means "the imaginary part of". This estimator

of the rate of change of phase was introduced by WOODMAN and GUILLEN, (1974). Notice

that the value of the autocovariance p(r) at r = 6t can also be found from the power spectrum

P(f) as (Wiener-Kintchine theorem e.g BRACEWELL, 1978)

v_

p(St) = _ P(fj)e 2"'l's' (7)
j='

where fj = (j - 1)/T, T being the data length of the time series {f(tk)}.

Then

_,_d= _ < -_- >= ta,_-' [ Re{Ei.=, p(fj)e2,,if6,} j (8)

Since P(f) is real (by definition),

{v,_d = _-r < -_ >= tan-' Z_=, P(fj)sin(2rfj6t) '_
_j"__, P(fj) cos(2ri ffit) J (9)

In the limit that the term in the right hand brackets {}is is << 1 and the P(f3) values are

small for the larger f_ l, this approximates to

n

A _.q=, f,P(fj)
v,.,,a "" - (10)

2 Ej_=, P(fj)

This last expressmn is one commonly employed as an estimator of the radial component of

the velocity (eg GAGE and BALSLEY, 1978; ZRNIC, 1979 ). Nevertheless, notice it is only an

approximation of the more exact expressions (6) and (9), and breaks down when the argument

of the tan-' {} expression in (9) becomes comparable to 1. This can happen particularly when

the signal is noisy or when the spectral peak is close to the Nyquist frequency, and in these

cases the approximation (10) can give erroneous estimates. In the case of high noise levels,

the true radial velocity is underestimated. The more exact expressions (6) and (9) will work

well in these cases, however.

Some workers extract the radial velocity from the spectrum not by using expressions like

(6) - (10), but by fitting a particular spectral shape to the data. Usually a Gaussian function

of the type

P [ (f - fd) 2 ]
S(f) = U + _ exp [ 9_-a"7 j , (11)
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is used, where f is frequency and P, fa and o are echo power, mean Doppler shift and root

mean square spectral width, respectively. N describes the noise contribution, and represents

a constant offset of the spectrum since noise appears with equal spectral density at all fre-

quencies. This method bypasses some of the problems involved in applying equation (10) (e.g.

WOODMAN, 1985); its application is fairly straight-forward and it will not be discussed in

any more detail here.

2.1.2 Practical problems with the DBS method

Having now determined the radial velocity, it is necessary to determine what it means in terms

of atmospheric dynamics. It is generally true that the measured velocity really is the radial

component of the mean velocity of the scatterers, but this is not always true, and cases can

occur in which the measured velocity is an effective phase velocity of a moving patch. Such

cases are rare, but should be born in mind. CROFT (1972) has given an excellent discussion

of the Doppler technique, and some of its potential pitfalls.

I Rodar vo/u,,,,o.

I I
% I
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Side-view View from above

(o) (b)

Fig. 3 DBS beam configuration (typical).

There are also many complicating features of a practical nature which arise in using the

Doppler method to determine a mean wind (e.g. ROETTGER, 1981). It is sometimes assumed

that the vertical wind component is zero, so that off vertical beams can be used to infer the

horizontal wind. The situation is described in fig. 3, and if the vertical velocity w is zero then

the component of the horizontal wind in the azimuthal direction of the radar vhor can be found

a$

_)rad

vho, = sinOT (12)

By using orthogonal beams, one say pointing Northward and one Eastward, the total mean

horizontal wind can be determined. However, the scatter recorded by each beam is received
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from different regions of the sky (fig. 3b), and it is often desirable to know the wind vector

at a single point in the sky. Provided that the wind does not vary too much spatially it is

possible to assume that both components apply immediately above the radar, but sometimes

the divergence of the wind field can be substantial. If the divergence is small, then it is also

possible to correct for the vertical velocity, because one can determine the vertical speed w

over the radar by using a vertical beam, and then when using an off vertical beam

vr.a = VhorsinOT + WcoSOT (13)

SO

Vrad -- WCOSOT

Vho_ -- sinOT (14)

Nevertheless, the possibility of divergences in the wind field is a very real one, and must

always be borne in mind when using these expressions.

Even without the problems of spatial variation of the wind field, the above simple assump-

tions can be in error. For example, if the scatterers are not isotropic, but are on average "

stretched out " into horizontally aligned oval-type shapes, then they will have a nonisotropic

backscatter polar diagram. Radio waves incident vertically will be more efficiently backscat-

tered than those incident obliquely. Thus for an off vertical beam, strongest scatter will be

received from angles nearer to the zenith than from the mean direction of tilt of the beam

(e.g. ROETTGER 1981; HOCKING et al., 1986). We might parameterize the backscatter as

B(O) _, e-_ 05)

and then 0. is a parameter typifying the nature of the scatterers. For example, 00 =

90°corresponds to almost isotropic scatter provided we are only interested in angles of 0 out to

20°or so, and 0m = 0°is for the case when reflection only occurs from overhead. (Some authors

use the form e 8. for B(O) .)

It can be shown that O, relates to the ratio of the length to the depth of the scatterers

(HOCKING, 1987a), and this relationship will be discussed in a later section. For the present,

we will simply note (e.g see appendix A) that in such cases one should replace the angles OT

in equations (12) to (14) with the parameter 0_i1 where

8°2]-' (16)sin6_11 = sin6r 1 + O_J

Here, it has been assumed that the radar two-way polar diagram has a Gaussian shape of

the form ezp{- sin_ 0___sin 2 00} (when aligned vertically), so that the half-power half-width of

the Beam is 0 ! = _/£n2.0o. Even beyond this, however, there are still potential problems with
O •D ppler determination of wind speeds. If there are a variety of shapes, for example, the simple

theory of appendix A is not valid. If stratified reflecting Steps exist as well as isotropic and

anisotropic scatterers, then complications also arise.

The shapes of the scatterers can also affect determination of the vertical velocity. If, for

example, the atmospheric scatterers are not aligned exactly horizontally, but have a small tilt,

then the direction of preferred scatter will not be immediately overhead, but off to one side.

The result is that the small vertical velocities will be contaminated with a small component

of the horizontal wind. For example, if the effective tilt is only 1", and the beam half-power

half-width is say greater than about 3°, a horizontal wind of 50 ms -1 results in a contribution

to the " vertical " velocity of -,, 1 ms -1 . This is why most analyses of " vertical velocity
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" are made only by using long term means; it is hoped that such tilts average out to zero

when averaged over long times, but even then some caution must be exercised. Indeed, a

better radar configuration for estimates of the vertical velocity is a bistatic radar, with the

transmitter and the receiver well separated (e.g WATERMAN, 1983).

Other problems also exist; for example it is possible that erroneous wind speeds and wind

shears will result if the scattering layers are much thinner in depth than the radar pulse-length

(e.g. HOCKING, 1983a; FUKAO et al., 1988a, 1988b; MAY et al., 1988)

Despite all these potential problems, the Doppler method still remains a good way to get

mean winds in the atmosphere, but any user must be aware of these limitations and bear them

in mind during any experimental study.

2.2 Spaced antenna methods:

FCA and Interferometer techniques

There are alternative approaches for determining atmospheric wind speeds, and these are the

class of spaced antenna methods (e.g. see reviews by HOCKING, 1983c; BRIGGS, 1984;

HOCKING et al., 1989). In this, one uses separate groups of antennas, spaced apart on

the ground, to determine the wind speed. There are two main approaches ; the first uses

cross-correlation techniques to determine the time it takes for the diffraction pattern of the

irregularities to cross between groups of antennas, and in its most sophisticated form is called

Full Correlation Analysis, or FCA (BRIGGS, 1984). The second approach, originally intro-

duced by PFISTER(1971) and later by FARLEY et a1.,(1981), ROETTGER and IERKIC

(1985) and ADAMS et a1.,(1985) involves using the groups of antennas to form an interfer-

: ometer. Briefly, such interferometer methods using phase differences between signals received

at the groups of antennas to determine angles of arrival. Cross-spectral techniques are used

for such angle-of-arrival determinations. Doppler methods are then used to determine the

radial velocities associated with each separate scatterer. With such methods, it is possible to

calculate the positions of the main scatterers in the sky, hence enabling more accurate deter-

mination of horizontal and vertical winds. The major disadvantage of this technique is that

it requires that preferred regions of scatter, of narrow angular extent, do indeed exist, so that

a direction can be determined. If scatter is diffuse, from a wide range of angles, the method

breaks down; even though apparent directions of preferred scatter might still seem to result

from the analysis in this case, they are not meaningful (e.g. BRIGGS, 1980).

These two techniques have been discussed extensively in HOCKING et al. (1989), and

extensive discussions will not be entered into here. However, it is noted that they are viable

and effective alternatives to the DBS method, and their use is growing.

2.3 Brief comments on the various techniques

There are advantages and disadvantages in all these methods. For example, correlation analysis

techniques often use small groups of antennas, with corresponding wide polar diagrams. As a

consequence, they often produce winds which are averaged over a large area of the sky. On

the other hand, there is the advantage that both components of the wind speed are measured

in the same volume, directly above the radar. Furthermore, even if the atmospheric scatterers

have non-isotropic backscatter polar diagrams, correct estimates of the wind speed still result.

The vertical wind speed is not measured, and Doppler methods must be used to determine

this.

If isotropic scatterers are the main type of scatter, the spaced antenna and Doppler methodJ
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are equivalent (BRIGGS, 1980). If there is a significant contribution from specular reflectors,

it can result in enhanced scatter from the vertical, an advantage for the spaced antenna

technique, since that method uses only vertically aligned beams. However, in the extreme

that these specular reflector regions form a continuous blanket across the sky, with buoyancy

waves causing undulations in this blanket, then the FCA and other simpler versions of the

spaced antenna method can break down and effectively measure the phase speeds of the gravity

waves. This is a problem for E region studies using MF and HF frequencies, but in the middle

atmosphere it is rarely a problem (e.g. HOCKING et al., 1989).

As discussed, the major disadvantage of interferometer techniques is that they require that

there are preferred regions of scatter in the sky, of narrow angular extent, so that a direction

can be determined. If scatter is diffuse, from a wide range of angles, the method breaks down

completely. On the other hand, if such discrete scatterers are present, interferometer methods

enable high resolution studies of the scatterers.

It is clear from the preceding discussions that while the principles of estimation of wind

speeds are simple, in practice there are many complicating features, and determination of

perhaps the simplest target parameters, - their speeds, - is quite complex for the atmospheric

case. To first order, all the methods are sound; but if one is interested in details about wind

fluctuations, it is clear that it is necessary to know other features of the target, such as their

"aspect sensitivity", their shape, the spatial distribution of the scatterers, and perhaps even

the cause of the scatterers. In due course, we wilt address methods to determine such target

parameters.

3 Spectral width estimates

So far we have concentrated on determination of mean winds. In the Doppler method, this

relates largely to the mean frequency offset of the spectrum, whilst in the FCA method it

relates to the time delay of the peak of the cross-correlation function. But there is more

information in the signal. In the SA method, the width of the auto and cross-correlation

functions holds extra information about the targets; in the Doppler method, the width of the

spectrum contains the information. In some ways the second case is easy to visualize, so let
us concentrate on this case.

A variety of methods can be used to determine this spectral width. One can utilize either

the width of the autocorrelation function where it falls to one half of its value at zero lag, or

the second lag of the autocorrelation function, or the second moment of the spectrum (e.g. see

the discussion by WOODMAN, 1985). In all cases, one must be careful about the effects of

noise, since noise can cause systematic errors. For example, noise produces a narrow spike at

zero lag of the autocorrelation function, and this spike should be eliminated before proceeding

with analysis. A procedure commonly used to determine the spectral width is least-squares

fitting of a Gaussian-like function as in equation (11). In some cases, it is necessary to remove

excessively large spikes from the spectra, a procedure which is especially necessary when there

are "mirror-like" partial reflectors in the radar volume (e.g. HOCKING, 1983b). The details

of these procedures will not be considered here; we are more concerned with the interpretation

of the spectral width.

What then can cause the broadening of the spectrum? Perhaps the most obvious is random

motion of the scatterers. If each scatterer has a velocity superimposed upon the mean speed,

then each produces a line in the spectrum with a different frequency, as illustrated in the

following diagram.
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If the scatterers have, for example, a Maxwellian distribution, then the vertical component

of velocity (w) must have a Gaussian distribution, which is proportional to
ezp{-w2/(2w_ts)}. Since for a vertical beam the Doppler shift from any scatterer is f = _.w,

the spectrum will have a shape of the form ezp{-f2/(2f_Ms)}, where f_s = _.w_s.
For some years in the early period of VHF middle atmosphere studies, it was assumed that

this was the major cause of spectral broadening. However, for most VHF radars, this is not
in fact the case. There are other causes of spectral broadening, which while understood by a

few (e.g. ATLAS, 1964; SLOSS and ATLAS, 1968; ATLAS et al., 1969; HOCKING, 1983a,
b), were not generally appreciated in the Middle Atmosphere community. Fortunately, this
attitude has changed recently. These effects will now be discussed.

A. \\ i II m

beams _

{el 8eom Broadening {b} _heor Broadening

beams _._

[c| Vertical Motions

_allest scales_/2

Largest sceles_

Buoyancy scales

Fig. 5 Contributors to the spectral broadening at any instant.

For a vertically pointing beam, probably the main cause of the n0n-zero spectral width is
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the so-called "beam broadeninff, which is illustrated in fig. 5a.
Even if all the scatterers are moving horizontally at the same velocity, each scatterer will

produce a different Doppler shift. The nett result is a spectrum of finite width. This spectral
broadening has been modelled by several workers (e.g. HITSCHFIELD and DENNIS, 1956;
ATLAS, 1964; SLOSS and ATLAS, 1968; ATLAS et al., 1969; HOCKING, 1983a, b) , and

for relatively narrow beams ( < about 5 °half-power half-width), the spectral half-power half-

width f½b obeys the approximate relation (in units of Hz)

f_ = _-(I.O){._o,l0_ (17)

where O½ isthe two-way half-powerhalf-widthofthe polardiagram in radians,and _Y._o,is
the TOTAL horizontal wind vector. The same approximation is also fairly accurate even for
off-vertical beams, but it is important to note that the TOTAL wind speed should be used, and

NOT just the component parallel to the tilt direction of the beam. This formula is based on
the assumption that the scattering is statistically isotropic, an assumption which we will relax

shortly. When one compares the spectral half-widths due to the non-fluctuating components of
the wind-field to the experimental spectral half-widths measured with the vertical beam, one

frequently finds that the two are very similar. For example,figure 6 from HOCKING (1983)
shows an almost 1:1 relationship between the two parameters when spectra produced from 11s
data sets were used.

This point cannot be emphasized too strongly:- the spectral widths are often
dominated by so called beam broadening.

There are other effects which alter the spectral width, particularly if the beam is tilted

from the vertical. Horizontal fluctuating motions will alter the spectral width (e.g. see fig.
7), and so will changes of the mean wind with height, as occurs for example in a wind shear
(e.g. fig 5b). The former effect always broadens the spectrum, whilst the latter one can either
reduce or increase the spectral width depending on the sign of the wind shear. These points

are discussed in more detail by HOCKING (1983a), for example.

.qOqSV _ dt _ /

_t$ OCT _ef _ 0"; ,,-r_ _?"
It
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Fig. 6.

T' g_-t

•_ tO/0.5 " I

0% .... ,_ ,;
mecttv t,A

Scatterplotsof experimentalspectralhalf-powerhalf-widthsdeterminedfrom I I sdamsetsvs. the
qxctralhalf-width_pected purelydueto beamandwind-shearspectralbroadeningfor the troposphere.
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Of course the target parameter which is desired is the RMS fluctuating velocity of the

scatterers, but this often contributes only a small fraction to the total spectral width. To

determine the RMS fluctuating velocity, one should first use the measured mean wind speeds

as a function of height, and the known polar diagram (radiation pattern) of the radar, to

determine the spectral half-power half-width f_,, contributed by the non-fluctuating effects.

Then the contribution from the fluctuating component f.t_a can be found through the relahon

1_,_¢, 2 -/_ (18)= f½_p_ _,,/

This arises because the experimental spectrum is approximately a convolution between the

spectrum which would be produced if there were no fluctuating components, and the spectrum

due to the fluctuating components alone (at least for very narrow beams (< about 5*half-power

half-width); the more general case has been modelled by HOCKING, 1983a).

To properly consider all the contributions from the mean wind including wind shear, a

more accurate computer model needs to be used (eg HOCKING 1983a), but in many cases

equation (17) serves as a useful approximation to obtain f½_l"

Of course equation (17) is only a first-order estimate of the spectral half-width due to the

non-fluctuating component, and it also assumes that the scatterers scatter isotropica/ly. If

the scatterers are anisotropic, as may be the case and as has been discussed previously, then

the true contribution from non-fluctuating components will be less than that calculated with

(17). That equation can still be used, but (see appendix A) O_ must be replaced by 8_ = R.O_
where

__a., , (19)
R; 1+0 ½

0½ being the true half-power half-width of the radar beam, and 00_ is the half-power half-

width of the polar diagram of backscatter due to the scatterers (i.e. 0,½ -- lv_-_.Oo, Oo being

defined by equation (15)). Notice that once again it is important to know the b_ksc_tter polar
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diagram due to the scatterers, and it is becoming more and more important as we proceed

through this text to know this parameter.

Having now determined the contribution due to non-fluctuating aspects of the wind field,

and removed it from the experimentally determined spectral half-width, it is now necessary
to decide what this residual contribution means, and how to interpret it. There are at least 3

possible contributions to this remaining contribution to the spectral width, namely the effects

of fluctuations in the velocity due to turbulence, fluctuations due to buoyancy waves, and

the decorrelation time associated with the decay of turbulent eddies. It is not always easy to

separate out these terms.
In the case of a vertical beam, the most important effects are the vertical fluctuating

component of the turbulent velocity, and both the vertical and horizontal components of the

buoyancy-wave field. The horizontal component of the buoyancy field is important because

although the beam is vertical, if the wave amplitudes are substantial the radial components of

velocity fluctuations occurring near the edge of the beam may still contribute to the spectral

broadening. This is especially true when wide beams are used, and is an argument for the use
of narrow beams when studies of turbulence are made.

When off-vertical beams are used, both the vertical and horizontal fluctuating components

of the turbulent velocity field are important. However, the horizontal components of the

buoyancy-wave field become even more important in contributing to the spectral broadening;

variations of velocity due to buoyancy waves occur both as a function of position within the

radar beam and also as a function of time during the period of data collection. This latter

effect can be quite dominant, and swamp the contribution due to the turbulence. For example,

fig. 8, taken from HOCKING (1983b) illustrates this point, and shows the dramatic increase

in spectral width recorded when an off-vertical beam is used as compared to a vertical beam.

In this case the radar was an MF radar observing the mesosphere, and the beam-width was

wider than for many VHF radars (about 4.5 °half-width); data were collected for 12 mins in

order to emphasize the effect. In normal VHF experiments the effect may not be so dramatic,

but nevertheless occurs.

.TUNE t. tUl . Ii1.0-t152 L.T.

TILTEo GEAM (11.SEW)o82km

-- A. ssS %

-O.2S -O._ -0.15 -O.t 405 e e.o5 o.! o.15

" Frequency (Hz)

Fig. 8: The solid curve shows a spectrum recorded with the Buckland Park 1.98 MHz radar, using

a I0 rain data length and a beam tilted 11.6°off-vertical. The dash-dot curve shows the approximate

shape of the spectrum recorded with a vertically pointing beam at the same time.
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Thus measurements of turbulent energy dissipation rates are best made using a vertical

beam. The contribution due to turbulence can be envisaged as follows, and is illustrated in

fig. 9. Backscatter occurs predominantly from scatterers with scales of the order of the radar

half-wavelength, but these scatterers are carried around by the larger scales. The mean square

fluctuating velocity measured by the radar is then the integrated effect from scales of the order

of the radar half-wavelength out to scales comparable with the radar volume (e.g SATO and

WOODMAN, 1982; HOCKING, 1983a).
(flect of tco|e Of scoltere¢ on v"

[] Rl$oiutkm | 0 )

T

T Illustration of the elect of scale of resolution on

measured d 2values.(&)Themotion of-, single scatterer.In any
timeinterval zbonly a limited amount of velocity fluctuation
occurs,but in thelarBertimeinterval T. the full possible range
of velocity fluctuations occur, u larger scales become more
deczive. (b) and(c)showthat manyKattefe_ oontributeto
Itwfee_d,,ilpudrecelved,each witha dlfereat velocity, so afull

Fig. 9 range of Doppler veloc/tles is experienced in a veryshort tim_
For radars with pulse lengths and bea_-widths comparable to the buoyancy scaJe of tur-

bulence, scales even beyond the buoyancy scale may contribute to the mean square fluctuat-

ing velocity, although fortunately with reduced contributions. Let us say that the measured

mean-square fluctuating velocity is due to a fraction F from scales within the inertial range of

turbulence, and the remaining contribution comes from scales within the buoyancy range. The

exact value of F depends on the radar configuration, sampling time, etc., and for the present

we will not concern ourselves with its evaluation.

Then we may write (following HOCKING 1983a, 1986) that the velocity variance observed
with the radar is

P

= j O,l(kx)dk, (20)

where Oll(kt) is the longitudinal one-dimensional spectrum function (e.g.BATCHELOR,

1953, p.50) for the direction radial from the radar. The integration is performed over all scales

which can affect the radar measurements, which for VHF radars means scales out to the radar

pulse length or the buoyancy scale of turbulence, whichever is larger. For a radar pulse length

of 600 m, say, this means that scales well into the buoyancy range will be effective, since the

thicknesses of these layers is often well below 600 m (e.g. CRANE, 1980; BARAT, 1982) tad
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the inertial range-buoyancy range transition scale is usually several times less than the layer

thickness (e.g. BAR.AT, 1982). If it is assumed that a fraction F of the measured velocity

variance resides in the inertial r_..._ge and the rest in the buoyancy range, we may write that

the measured velocity variance v 2 obeys the relation

-k_ 011(kl)dkl + Ou(k_)dk, = F.v 2 (21)
k_ B

where ks is the wave number of the buoyancy scale (transition scale between the inertial

and buoyancy ranges) and kx is the Bragg backscatter wave number. For Kolmogoroff, inertial-

range turbulence, and defining the turbulent energy dissipation rate as e, we may take

On(k) = .1244C_e2/s I k ]5/3 (22)

and solve for e in terms of kB, k_, and v"-_'. C_ is well known from careful atmospheric

experiments (e.g. CAUGHEY et al., 1978) to be close to 2.0.

This may then be used (e.g HOCKING, 1983a) to derive

where

= e.LB/ L_/3- (23)

Notice that this also means that
__1

V2 _

LB ___1.1--
/s'

a useful relation for making radar estimates of the Buoyancy scale.

Of course v 2 can be found from the relation

v---i= f],_a/(2en2)

provided of course that f_yJuct can be shown to be entirely due to the turbulence.

(28)

e. = 2r ( Ix-v'_]3/2 /LB. (24)

If F is taken to be 0.5 and C_ =- 2.0, then we can write approximately that

e = 3.45 (_)3/2/LB. (25)

WEINSTOCK (1978b) has suggested that the Buoyancy scale relates to the Brunt-Vaisala

frequency and the energy dissipation rate through the relation

2r _ _a
LB = "_.'.'._e_WB 2

and using this relation with equation (24) gives

[12.24F1 --
e= L C2 jvUB, (26)

fs being the Brunt-Vaisala frequency in Hz. Again taking F = 0.5 and C_ = 2.0, we may

write

e "" 3.1v2fB (27)
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IfF actuallyvariesup to 1.0or down to 1/4,then the estimatesrepresentedby equations

(25 and 27) willbe incorrectby a factorof2-3.
These formulaeassume that the scatteringscale),/2liesin the inertialrange. However,

itshould be noted that ifscatteroccursfrom the viscousrange,as may at times happen

in the mesosphere,the formulae are stilllargelyvalid.Itwillbe noted from (21)that the

mean squarevelocityisan integratedeffectdue to allscalesbetween A/2 and Ls and this

integrationisdominated by the largescales.A change inthe spectralform from (22)within

the viscousrangewillnot greatlyaffectthe integral;atworst,the A/2 term in(23)may need

to be replacedwith the inertialrange innerscale.

When the radar volume has dimensionslessthan the buoyancy scaleofturbulence,the

formulabecomes slightlymodified.The parameter LB isreplacedby the largerofthe pulse

lengthand the radar beam-width at the heightofscatter(which we willdenote as Lr),and

the constantofproportionalitychangesslightly.In thiscaseks inequation(21)isreplacedby

a Fourierscalerepresentativeof the range ofFouriercomponents inthe pulse(orthe beam-

width,whicheverislarger).For example, ifthe pulseisGaussian in shape with a half-power

half-widthL,,then itsFouriertransformhas a half-widthathalf-powerofabout 0.44x27r/L,.

This differentsituationmeans thatforL, << LB, the followingrelationapplies(e.g.LABITT,

1979;BOHNE, 1982 (appendixC))

1.3 3/2/L,. (29)

The constant(1.3)has changed considerablycompared to that in (24) and (25),and

there are two main reasonsfor this. Firstly,the constant 1.64 assumes that there isno
Buoyancy scale,and assumes that the k-_ law appliesover allscales;thus Fourierscalesof

smallwavenumber, althoughonlya smallcontributiontothe pulse,make a largecontribution

to the integralin (21). As a result,(29) shouldnot be appliedeven ifLr islessthan but

comparable to LB; inthat case,the constantto be used shouldbe considerablylarger.The

secondreasonrelatestothe differentphysicalsignificancesofL, and Ls.

Itshouldalsobe noted thateven ifL, << Ls, ifdata lengthsofa minute orso are usedin

formingthe power spectra,equations(24)and (25)arebetterestimatorsofe;seefig.9.

The relations(23-29)(whicheverisapplicable)may be used to determine the turbulent

energy dissipationrateifone knows the contributiontothe spectrum from turbulentfluctu-

ations.However, we stillmust decidewhether allthe remainingspectralwidth isindeeddue

to turbulentfluctuations.Even when verticalbeams areused tomeasure the spectrum,there

may stillbe a small contributionduc to buoyancy waves, (as has alreadybeen discussed),

but itispossibleto make at leastsome attempt to separatethe turbulentand buoyancy

wave effects.Use of procedureswhich involveleast-squaresfittingto a Ganssian shape like

(11)help,becausebuoyancy-wave fluctuationsofspecularreflectors,forexample,can produce

fairlynon-Gaussianspectra.Thus spectradominated by buoyancy-wave fluctuationsareoften

rejectedby such procedures.Another possibilityisthat used by HOCKING (1988),whouti-

lizedthe factthatthe buoyancy-wave fieldtendstohave only a smallcontribution(ifat all)

from oscillationswith periodsoflessthan 5 rain.This isnot tosay,however,thatusinga data

lengthoflessthan 5 rainseliminatesthe wave effects,sinceeven a fractionofa wave cycle

couldcausesignificantcontributionstothe spectralwidth.However, one can predicthow the

spectralwidth might change asa functionofdata lengthinthiscase,and by comparing this

predictiontothe truevariationinspectralwidth asa functionofdata length,can make some

estimateof the relativecontributionsofbuoyancy waves and turbulence.Such a processhas

some uncertaintyassociatedwith it,but isneverthelessofsome value.An example was given

inHOCKING (1988).
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We have not yet addressed the contribution due to the decorrelation time associated with

the finite lifetime of the eddies. In fact provided that the radar wavelength is substantially

less than the buoyancy scale, this is not a major contribution, as will now be shown.

If the energy dissipation rate is again denoted e, the typical eddy scale as _ and the velocity

associated with such an eddy is denoted as v, then the typical lifetime r of an eddy is

Hence

so that

where

£
r _ - (30)

V

V 2

e ,_ -- (31)
T

v2 (gt 21 (32)
e \r/ "e

r -_ g3e-3 (33)

Thus the growth and decay of eddies prduces an autocorre]ation function with a half-width

at a value of 0.5 of about r , where r is given by the above expression. If the autocorrelation

function is taken to be Gaussian, then its Fourier transform is also Gaussian, with a half- power

half-width of 0.22 / r, and we will denote this as fac , where "de" stands for "decorrelation"

Thus

fa_ "__ __'22_ .22g-}e_, (34)
7

where £ can be taken to be of the order _/2.

Contrast this to the contribution due to fluctuating motions, which contribute out to scales

of the order of the Buoyancy scale, Ls. In this case, we have already seen (equation 25) that

if we take F as about 0.5, then

1) 3

e -_ 3.5 RMS (35)
LB "

Then the half-power half-width of the spectrum due to the fluctuating motion of the scat-

terers is given by

ffluc,(m) _-- .8 ¢3 L_ (36)

Hence the ratio of spectral half-widths due to the eddy motions and the decorrelation time

of the eddies is

~ 4fJ,_c,<m______A_
fd_ [A/2J

Physically this arises because the spectral width associated with the scatterer movement is

related to the buoyancy scale Lo, (since we have seen that this width is due to the integrated

efect of all scales up to Ls), whilst the decorrelation time depends only on the scale of the

scatterers.

For a typical case with _/2 equal to 3m, and LB equal to say 200 m, the ratio is about 16.

Since the total spectral width due to these two components combined is equal to the square

root of the sum of the squares, the correction due to the decorrelatlon time in this case would

be only a fraction of a percent. Thus provided the Buoyancy scale is greater than the Bragg
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backscatter scale by a few times, the decorrelation time of the eddies is only a minor correction

to the spectral width and can usually be ignored.

It was mentioned earlier that information about the level of turbulence also exists in the

correlation functions, and can be obtained from the Full Correlation Analysis technique using

spaced antennas. Indeed, one of the output parameters of the Full Correlation Analysis is a

parameter which is usually denoted as Tz and represents the correlation function half-width

which would be measured with a radar w_ich moved along the ground with the velocity of the

mean wind in the scattering region. Spectral beam-broadening has been removed from this

parameter, although the effects of wind-shear have not. Thus the parameter f_ = 0.22/Tg
• 2

can be used in place of f/J_a in all the discussions above; the main potential pro_blem is that

there may be increased contributions from buoyancy waves if the polar diagram of the system

is wide.

Provided the effects of gravity waves can be adequately separated, or even shown to be

relatively unimportant, the procedures described above allows radars to be used to extract

estimates of atmospheric turbulence.

It is also possible to infer the turbulent diffusion coefficient for a turbulent layer through

the relation

KM = c2_/_2B (38)

e.g. WEINSTOCK, 1978a, b; LILLY et al. 1974). The constant c_ is quoted to have a variety

of values in the literature, ranging from about 0.25 to 1.25. The most commonly accepted value

seems to be 0.8 (WEINSTOCK, 1978). Ideally it is also necessary to know the Brunt-Vaisala

frequency averaged over the turbulent layer, but unfortunately it is not always possible to find

this. Some authors use climatological values, but it is better to use radio-sonde determinations

where possible.

The method of determining e described above has been used a few times, but is still largely

unexploited; a much greater use of these procedures is to be actively encouraged.

4 Power Measurements

One simple but effective method for deducing information about the scatterers is to record the

backscattered power. In many experiments powers are compared in a relative way; for example,

power variations as a function of time and height are usually studied in most experiments.

Even this simple process can give useful results, but it is even more effective if the radar can

be calibrated in an absolute sense. This requires some careful work by the user, but if this

is done it is then possible to convert the measured powers to effective reflection coefficients,

backscatter cross-sections, or perhaps estimates of the turbulence intensity. ( The parameter

actually calculated depends largely on the scattering mechanism, and we will consider ways

of determining this shortly.) Such calibration not only allows better comparisons to be made

world-wide, but also allows better comparison with theory.

Before showing how this calibration can be done, however, it is a useful exercise to look

in more detail at the mathematical formulation of the scattering process. We will begin by

considering the simplest case, namely that of reflection from stratified steps.
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4.1 Modelling the reflection and scattering processes

4.1.1 Horizontally stratified structure

Consider first, and for simplicity, a horizontally stratified atmosphere which has fluctuations
in the refractive index in the vertical direction but none horizontally. In fact we will see later
that this is not such an unreasonable model, and has some real applicability in the atmosphere.

A pulse of the form gl(t - z/c)cos[wc(t - z/c)] is transmitted, where fc = wJ(2z') is the carrier
frequency. At z = 0, this is a pulse which varies in time as gl (t)cos@ct). This can be written

as g(_) = g,(_)cos(k_) where k = 2_/c = 4_r/), (_ being the radar wavelength) and _ = ct/2
is a length coordinate which closely matches the height of the scatterers (e.g. HOCKING and
ROETTGER, 1983). If the refractive index fluctuations are described by n(z), then the radio-
wave reflection coefficient profile is given approximately by r(z) = _(dn/dz) (eg HOCKING

and VINCENT, 1982a). The reflected complex amplitude as a function of height is then given

by

aCz)= (_2} ®g(_) (39)

where ® stands for convolution. (e.g HOCKING and ROETTGER, 1983, and references

therein). (This expression is very accurate for VHF scatter, although if absorption is high or

the pulse is significantly dispersive, more careful approaches are necessary, such those given by
HOCKING and VINCENT (1982b), or even full-wave equations are necessary (e.g. BUDDEN,

1965).)
To begin, it is of interest to examine what happens when reflection occurs from a single

step of some finite thickness. The easiest step to deal with is one of the type with

I--z 2

r(_) _, J-_}. (40)

In this case the refractive index profile is a step of finite thickness, as shown in the following

diagram. Note that although d is a measure of the step depth, it is probably not the best
measure of this depth. A better measure of the step depth might be the distance between the

two points where the reflection coefficient falls to one half of it maximum value, or

w = 2/Vq_n2.d

Fig. 10

L....... -
2o j°/
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The convolution can be done numerically, but it is instructive to examine the process using

a slightly different approach. From Fourier theory (e.g. BRACEWELL, 1978) the convolution
can be done by Fourier transforming each of g(z) and r(z), multiplying the Fourier transforms

G(k) and R(k), and then re-Fourier transforming the product. The process is illustrated

diagramatically in the following diagram.

o k
, I

rfz) e---

--kre',,.) r,

I

A',C I i,
e (l !ack)xRCk)} II,,

,,,7.) A A
kt k, _"k

Fig. 11

Note that the Fourier transform G(k) of g(z) exists in a narrow band centred at ke = 4:r/A.

Notice also that the narrower the step (smaller. d) the wider the function R(k) and so the

product of the Fourier transforms is larger. In fact the peak amplitude of the product is

___ _t_ (41)A(k_) o¢ e oc e

- so clearly once d exeeds A, the backscattered power is very small. In fact even if d = ,_/4
(w = 0.42X), the reflected amplitude is 0.08 times that for a step of zero width (ie a sharp
discontinuity). The power will therfore be reduced by 22 dB compared to a single step. Many

authors have taken this to infer that only steps much less than about a quarter wavelength in
thickness will ever be seen by radar, and this may well be true for say MF radars. However, with

coherent integration and the greater sensitivity of modern radars, particularly VHF radars, it
is not so easy to adopt this argument; VHF radars can often see such steps even if reduced in
efficiency by 20 dB, and they are indeed capable of detecting layers with a depth d of about
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_/4. However, it is true that beyond this depth, the efficiency falls off remarkably quickly;

for example, if d = )_/2, the power is reduced by 80 dB, and even VHF radars would not

normally detect such a step. HOCKING (1987a) has discussed this point and suggests that

some "specular reflectors" seen by VHF radars have typical depths with 2d = 3 - 4 m, or w

between 2.5 and 3 metres; in other words, the steps are right on the edge of the region of

detectability.

Another useful model is that of "Fresnel Scatter", a model known for many years in D region

MF studies, (eg AUSTIN et al., 1969; MANSON et al., 1969; GREGORY and VINCENT,

1970), but given renewed popularity by GAGE et al (1981) in respect to VHF studies. In this

model, horizontal stratification is again assumed, but n(z) is assumed to vary randomly, so

the atmosphere can be thought of as a series of thin slabs sitting atop each other, each with

slightly different refractive indices. Despite some initial controversy, it is relatively easy to

show that in this case the backscattered power is proportional to the pulse length (HOCKING

and ROETTGER 1983), and if one includes the decrease in reflected power as a function of

height z then one finds that the power received by a radar takes the form

c,2P_A _
(Az) (42)PR- 4),2z_

where PR is the received power, c_ is the array efficiency, Pt is the peak transmitted power,

A, is the array effective area, ._ is the radar wavelength, z is the height of reflection, M is the

mean generalized refractive index gradient and F()_) is a "calibration constant" which must be

determined empirically for each radar. The term Az represents the radar pulse-length. In the

case that M varies substantially within one pulse-length this formula need some modification,

as described by HOCKING and ROETTGER (1983). Later developments of this model have

been discussed by GAGE et al., (1985) and GREEN and GAGE, (1985).

4.1.2 Three dimensional structures

The next extension to these models is to allow the scattering medium to have non-constant

structure in the horizontal direction as well. An example might be fully developed isotropic tur-

bulence, in which the refractive index has random fluctuations caused by the turbulent velocity

field. In this case, the theory for relating the backscattered signal to the turbulence intensity

has been fairly well developed (OTTERSTEN, 1969; VANZANDT et al, 1978; HOCKING,

1985). The backscattered power depends not only on the intensity of the turbulence, but

also the mean refractive index gradient in which the turbulence exists. In the mesosphere,

the latter term is largely determined by the electron density gradient, in the stratosphere by

the temperature gradient, and in the troposphere by the temperature and humidity gradient.

Expressions for these potential refractive index gradients are given below, but expressions for

evaluation of the turbulence intensity from measurements of the absolute backscattered power

wil be left until after the following section on calibration of a radar.

In the unionized atmosphere, and for centimetre and metre radio waves, the potential

refractive index gradient is given by (TATARSKI, 1961, p 57)

15500 '_ZZ ' (43)T2 .P. l+-w-q ]

where P is the atmospheric pressure in units of millibars (hPa), T the temperature (°C),

F_ is the adiabatic lapse rate, and q = e/(1.62P) is the specific humidity, e being the water

vapour pressure.
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In the ionosphere, the relevant potential refractive index gradient is given by ( HOCKING,

1985)

On[ w_s dN Ndp]M, = -_ g dz + pdzJ (44)

where N is the electron density, n is the refractive index, and p is the neutral density of
the atmosphere. The Brunt-Vaisala angular frequency is represented by w_, and g represents
the acceleration due to gravity. Notice that this can also be written as (e.g. THRANE and

GRANDAL, 1981)
On N dP

Mc = _ dz _-z (45)

where 7 is the ratio of specific heats at constant pressure and constant volume.
For a VHF radar,

On 1 -1 ,_
= _r r.,_, (46)

where re is the classical electron radius. At HF and MF, the relation between N and n becomes

more complex (e.g. BUDDEN, 1965).
Let us now turn our attention to the subject of calibrating the radar, so we may then see

how to use the above expressions to determine turbulence intensities.

4.2 Calibration of the radar

In order to calculate the parameters like backscatter cross-sections of the scatterers or the

reflection coefficients of the reflectors, it is necessary to calibrate the radar. In this context,
"calibration" refers to calculation of appropriate coefficients which enable conversion between

the power received by the radar and reflection coefficients, back-scatter cross-sections etc
(rather than determination of the polar diagram of the radar, for which the term "calibration"
is also often used). Many radars world wide have still not been absolutely calibrated, which

is a great pity.
One simple way of "calibrating" the measurements is to compare the signal received to the

noise. For a VHF radar, the noise is predominantly sky-noise, due to extra-terrestrial sources.
By measuring the ratio of the signal-to-noise (SIN), it is possible to get an approximate

measure of the received power, provided the noise level is known (e.g. VANZANDT et al.,

1978). Standard charts exist which may be used to give the noise level. However, this is not
the best way to determine the signal power. For example, the true noise level has a diurnal

variation, depending on the passage of noise sources through the beam, and of course radars
at different locations have different dominant noise sources . It is also likely that the noise
level may change as one changes the orientation of the beam. Furthermore, the procedure

is of no use for MF and HF systems, in which noise depends on atmospherics like lightning.
Therefore, other more accurate calibration procedures are to be preferred.

A moderately effective technique is to use a noise generator to calibrate the receiver. A

noise generator is fed into the receivers at the point where the receiving antennas are normally
connected, and the signal is recorded. Usually VHF radars employ coherent integration of the
signal, and of course noise is incoherent, and this factor must be taken into account when the

calibration is performed. For noise, the sum of N coherent integrations increases the total
power by factor of N times, whilst for coherent signal it increases by a factor of N 2. These

differences are usually fairly easy to allow for, however, and calibration in this way is relatively
simple (e.g. HOCKING et al., 1983). One simply determines what a particular level of receiver

input power produces in terms of output units, and henceforth any measured receiver output



249

can be converted back to an input noise power. Standard radar equations may then be used to

determine parameters like the scatterer cross-sections and reflection coefficients. For example,

knowing the output power of the transmitter, Pt, the reflection coefficient of a scattered layer

can be found through the relation

PtetG , --_

Pn - 4"_'_2ennlq.n" (47)

where Pn is the received power, Pt is the power produced by the transmitter, G is the gain of

the transmitting array, et and en are the efticiences of the transmitting and receiving systems,

(including th.___eefficiencies of the respective arrays), An is the receiving area of the receiving

array, and R 2 is the mean square reflection coefficient. In the case that the same array is used

both for transmission and reception, we may use the relation An = G_/(4r) to give

__ Pn64 _r2z 2

R 2 - p, G2e_ (48)

If the scatter is due to turbulence, an effective backscatter cross-section cr can be found.

Here, a is the power backscattered per unit solid angle, per unit incident power density, and

per unit volume, a is evaluated through the relation (e.g. HOCKING, 1985)

PtenetGAn V

Pn = 41rz 4 .a._-_, "(49)

where V is the radar volume. For a monostatic radar, V = r(zO_)2.Az, where 012 is the radar

two-way half-power half-width and Az is the pulse length ( = cr/2, where r is the transmitted

pulse length in seconds and c is the speed of light in ms-l).

The efficiency e is often hard to determine, but even if R 2 or a or C_ can be determined to

within a factor of 2 or 3, it is still useful. Various ways exist for calculating radar efficiencies,

but lack of space prevents their discussion here. Examples include methods discussed by

VINCENT et al., (1986) and MATHEWS et al., (1988).

At HF and MF, use can be made of the fact that the radio pulses are totally reflected

from some part of the ionosphere. If a so called "second hop" echo occurs, (which arises when

the pulse is totally reflected, returns to the ground, is re-reflected back to the ionosphere and

returns), then the ratio of the strengths of the main and second hop echoes may be used to

determine a calibration constant for the system. To see this, write that the power received

form a reflecting layer at height z, and of reflection coefficient R is

P,R = _-_-R_z-2 Pt. (50)

where _; is a calibration constant. In this case, Pt need not even be the actual transmitted

power, but any value proportional to it. Then if a second-hop echo exists, the received power

from it is

P2n = t_-2ff_ ( 2z )-_ Pt. (51)

Then squaring (50) and dividing through by (51) allows elimination or R _ and so

2,/P7 
- (52)

zP_n

In this case, neither PR nor Pt need to be known absolutely, and each can be a quantity

which is simply proportional to the true received and transmitted powers, t¢ can be determined
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as above, and then for any echo, whether it be strong enough to have a second hop or not, R2
can be evaluated through (50).

In VHF studies, there is no totally reflecting surface. It is possible to use artificial satellites,

or even the moon ( e.g. MATHEWS et al., 1988 ) to calibrate the system, provided that the
backscatter cross-section of the target is known. In this case, the efficiency terms can also be
evaluated.

The absolute calibration of radars by any of the means discussed above, or any other

means, is to be actively encouraged, and will make comparisons between radars and between
observations and theory much easier in the future.

4.2.1 Determination of turbulence intensities from measurements of received

power

Once it can be ascertained that turbulence is the main cause of the radio wave scatterers,

it is possible to convert the received powers to parameters which describe the turbulence.
One key parameter is the "(potential) refractive index structure constant", usually denoted as

C_. If the turbulence obeys the classical Kolmogoroff inertial spectrum, then the spectrum of
refractive index fluctuations is given by (TATARSKI, 1961, 1971)

¢.(k=, k_,,k,,) = 0,033C_ I k 1-_ (53)

where a normalization has been chosen such that f f f_oo ¢(k__)dk =< n _ >. Thus C_ is a

parameter which indicates the level of refractive index fluctuation. C,_ can be determined
from the cross-section defined above through the relation

= 0.00655_ _ c_.x- _ (54)

(Note that sometimes a cross-sectlon r/= 4ra is used, in which case r/= 0.38C_A-}). When
combined with the equations seen earlier, we see that for a monostatic radar

Pnz2_}
C,2 _ 66. ptAne2A z (55)

Appropriate relations can also be easily derived for the case in which the transmitter and
receiver are separate systems (also see HOCKING, 1985).

C_ is a useful parameter, but an even more useful one is of course the turbulent energy
dissipation rate, e. It is possible to relate C_ to e in the following way.

Starting from TATARSKI, 1961, (p44, equation 3.19), we have

C_.= a2Ne -_, (56)

where N is a parameter defined by
N = K,M 2 (57)

for a stratified environment. The constant a2 has been measured to be about 2.8. Using the
definition of the Prandtl number Pr = KM/K,_, defining a' = p(1, and Using the relation seen
earlier that

IfM = c2e/w_ (58)

e.g. WEINSTOCK, 1978a, b; LILLY et al., 1974), we may see that

2 2

= [a2a, c2M2 ] (59)
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These relations have also been derived by BLIX (private communication, 1988) ; a sim-

ilar expression was derived by VANZANDT et al., (1978) and noted by HOCKING (1985),

although a slightly different proof was used in the second case, with the result that

2

2 2
C_wB

P_(=)isthe criticalRichardson number at which turbulence should develop, and b isyet another

constant relating the energy dissipation rate to the mean windshear. In fact VANZANDT et al.,

(1978) and HOCKING (1985) took b =1.0, so b did not appear explicitly in their expressions,

but with hindsight this was not wise. The first expression (59) is derived in a more fundamental

way, and requires less assumptions, than the second (60), and it is better to use the former.

The constant c2 is quoted to have a variety of values in the literature, ranging from about 0.25

to 1.25. The most commonly accepted value seems to be 0.8 (WEINSTOCK, 19785).

An extra complication arises if the turbulence does not fill the radar volume, and indeed this

often appears to be the case. It appears that in the stratosphere and mesosphere, turbulence

occurs in relatively thin layers with thicknesses ranging from a few tens of metres to perhaps a

kilometre or so, but generally of the order of lOOm. At any one instant, only a small fraction of

the radar volume contains turbulence, and this should be taken into account when calculating

e. In other words, the calculated value of C_ is actually too small by a factor F,, where F,

is the fraction of the radar volume which is filled with turbulence at any one time. Thus one

normally calculates

C_(turb) = C_(radar)l F,, (61)

where C_(radar) is the value determined from the radar measurements. VANZANDT et

al.(1978, 1981) have developed models for the variation of F as a function of atmospheric

conditions, enabling estimates of e to be made. Furthermore, one is often interested in the

mean value of e averaged over the radar volume, so VANZANDT et al. suggested calculating

the quantity

"£ = FtQurb (62)

GAGE et al. (1980) used a simplified model based on VanZandt's model, in which they

showed that the parameter F_w_ could be determined to moderate accuracy from climatolog-

ical data, so that the simplified expression

= 7[C2,(radar)] _ ] (63)

could be used, where 7 = 1.08 x 10 =2 for a dry troposphere and 7 = 3.25 x 1021 for the

stratosphere. Here, P is in millibars, T in Kelvin, C,2 is in units of m-} and e is in units

of Wkg -1. Variations on these principles have also been presented by CRANE (1980) and

WEINSTOCK (1981).

Further complications arise if the turbulence is not isotropic, but we will not discuss these

problems here, important though they are, due to lack of space.

5 Aspect sensitivity of the scatterers

We have seen several times throughout this text that a better understanding about the shapes

of the scatterers is necessary in order to better interpret measurements of wind speed and

turbulence intensities. It would also naturally help in understanding the cause of the scatterers.
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The shape of the scattering irregularities has been the subject of active debate over many

years. Models have ranged from flat, mirror-like partial reflectors to "pancake-like" scatterers
to inertial-range isotropic turbulence, and in this review we will not dwell too much on these

arguments. Rather, we will first describe the main models, and then concentrate on the sorts
of techniques which might be, and have been, used to determine the shapes of the scatterers.

If it is assumed that the polar diagram of backscatter of the scatterers is of the form

(64)

, as assumed in equation (15), then 0o gives a measure of how rapidly the backscattered

power falls off as a function of zenith angle. If 0, tends towards 90 °, it indicates isotropic
scatter, whilst if 0, tends towards 0°then it indicates highly aspect-sensitive scatter.

There are a variety of models which have been advanced, but they basically fall into 2

categories. (e.g. LINDNER, 1975 a,b; BRIGGS and VINCENT, 1975; ROETTGER and LIU,
1978; GAGE and GREEN, 1978; HOCKING, 1979; FUKAO et ai., 1980a, b; ROETTGER,

1980b; GAGE et al., 1981; DOVIAK and ZRNIC, 1984; WATERMAN, 1985, amongst others).

(A) The first class assumes that individual scatterers are (on average) ellipsoidal in shape,
which may vary in their length to depth ratio as a function of scale. The extremes are spherical

shapes (isotropic scatter) and highly elongated structures.

(B) The second class of model assumes a horizontally stratified atmosphere consisting of
variations in refractive index in the vertical direction, so one can think of this as a series of

"sheets" of different refractive index. Such structures, if truly stratified, would have 0, =

0, but if we imagine that these sheets are gently "wrinkled", then 0, will become non-zero

(e.g. RATCLIFFE, 1956). In this case, the range of 0, values relates to the range of Fourier
components necessary to describe the wrinkles.

Proponents of model B do not claim that the whole atmosphere is like this, but that it is
like this in some plai:es at some times, and use the model to describe particular observations.

Sometimes hybrids of the two models are invoked and other, more complicated, models

have also been proposed, but they are generally based on the above models. To illustrate
these later models, as well as give a feel for how they are explained physically, some examples

of such more complicated models are shown below. The first (fig. 12a) is due to BOLGIANO
(1968), and assumes that an intense turbulent layer might mix the layer so that.the potential
refractive index across the layer is constant, with sharp edges at the side. These edges might

be able to explain the model B reflectors, for example, although doubts about the possibility
of a turbulent layer maintaining sharp edges exist.

The second model in fig. 12 proposes that scatterers near the edges of a confined layer
of turbulence are more anisotropic than in the centre. The model has been discussed by

HOCKING et ai. (1984), noted by HOCKING (1985), and also proposed independently by
WOODMAN and CHU (1989). Such a model is physically likely because turbulent layers are

often more stable near their edges (e.g. PELTIER et ai., 1978; KLAASSEN and PELTIER,
1985), but for the purposes of this paper these models are simply noted as the type of extension

to the simple models proposed above which should be borne in mind.
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proposal due to Bolgiano (196B), and the second represents a model
discussed in the text.

Fig. 12

Another model which may give a physical basis to model B is the proposal that the specular

reflectors might be damped gravity waves (e.g. VANZANDT and VINCENT, 1983; HOCK-

ING, 1987a and references therein) or even viscosity waves, the latter being capable of existing

at very short wavelengths (HOOKE and JONES, 1986).

Having now established that both models have some physical basis, let us concentrate on

the simpler models, since these form an excellent basis for later discussion of any of the more

complex models.

With regard to model A, it should be noted that 0, gives a direct measure of the length

to depth ratio of the scatterers. The following figure, from HOCKING (1987a), shows this

relationship.
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What techniques, then can be used to determine the nature of these scatterers?

Fig. 13
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Aspect ratio of scatterers, L/h,
as a function of e s, for h = .15_ (upper
curve), .195X, .25X and .32_.
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5.1 Experimental techniques to determine the nature of the scat-

terers

In the following section a variety of techniques which may be used to determine informa-
tion about the nature of the scatterers are described and some of the results obtained so far

discussed. The list is not, however, exhaustive.

5.1.1 Methods utilizing different beam configurations

One of the simplest methods to investigate the aspect sensitivity of the scatterers is to simply
point a narrow beam vertically, and then at several off-vertical angles. The variation in power

P as a function of beam tilt angle O, is then related to 0,. In fact it can be shown that

--, #__ + es. •P(Or) o • (65)

where 0_1/ is defined by equation (16), OT is the beam tilt direction from the vertical, and the
polar diagram of the radar beam is assumed to be of the form ezp{-(sin20)/(sinZOo)} [e.g.

appendix A; HOCKING et al (1986); note that the derivation in appendix A corrects an error
2

made in HOCKING et al 1986, in that the important term _. was neglected in the exponent

of e in that paper].
A typical experiment which might be performed is to compare the powers received with a

vertical and an off-vertical beam, and use this to deduce 6°. Utilizing equations (16) and (65)
(or equivalently (A4) and (A10)),it is possible to derive the following simple relation between

P(OT)/P(O), 6T and 0o. If R is defined to be In{P(O)/P(6r} (or R = 0.23026Rds, where R_s

is the ratio of P(O)/P(OT) expressed in dBs), then

R
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Typical variations of P(0) show an approximately Gaussian fall-off out to about 5°- 10°,
and then an approximately constant value beyond this, indicating possibly isotropic turbulence
with more anisotropic scatterers either embedded or nearby (e.g. DOVIAK and ZRNIC, 1984).

Typical values of 0• are often in excess of 8°in the troposphere, whilst in the stratosphere at
VHF values can be as small as 3°- 4°. The following diagrams from HOCKING et al (1986)
summarize some measurements made with the SOUSY radar in Germany (after correction for

the error noted above). Note also the tendency for the scatterers to become more isotropic in

the high stratosphere.
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Fig. 14

In the mesosphere, 0_ is typically 4°for VHF scatter below 75 km, although on occasions
isotropic scatter is also seen. Above 80 km, VHF measurements give 0_ to be about 6°- 8%
At MF, 0o is typically 2°- 5 °below 80 km, increasing to about 8 - 15°above 80 km (e.g.

LINDNER, 1975a,b; VINCENT and BELROSE, 1978. REID (1989) has summarized the
various mesospheric measurements.

An alternative means which may be used to determine 0_ is to utilize equation (16). By
comparing wind speeds deduced using the DBS method for a beam pointed at say 5°off-zenith

to one at say 15°off zenith, it is possible to deduce 0, from (16), assuming that the value
deduced with the 15°beam is the true wind speed. An a!ternative is to use spaced antenna

methods to determine the true wind speed, and then comparisons with the DBS measurements

may allow determination of 0,.
Another interesting determination of 0, was made by VINCENT and BELROSE (1978),
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who compared the powers received on two beams of different polar diagram widths, and used

the resultant ratios of powers to determine 0°. The method yielded results consistent with

determinations made by other techniques discussed in this section.

5.1.2 Spatial correlation methods

If one illuminates the sky from a transmitting array which has a very wide polar diagram,

and monitors the electric field received at the ground, then the variation of electric field as

a function of position is simply the diffraction pattern of the scattering irregularities. The

spatial autocorrelation function over the ground can be determined by using an array of

dipoles distributed over the ground, recording the signal on each dipole separately and then

cross-correlating between dipoles. The spatial autocorrelation function so produced is simply

the Fourier transform of the effective polar diagram (ie the combined polar diagrams of the

radar beam and the scatterers). If the e-: width of the effective polar diagram is 6,b, then

the spatial lag at which the amplitude of the complex autocorrelation function falls to 0.5 is

approximately 12.0/0,b radar wavelengths, where 0,b is expressed in degrees (e.g. HOCKING

et al., 1989).

Thus a useful technique for determination of the polar diagram of backscatter is to produce

the spatial autocorrelation function in the manner described, and then Fourier transform it.

Such a technique has been utilized by LINDNER (1975a, b) in order to study the aspect

sensitivity of mesospheric scatterers at an MF frequency of 1.98 MHz. For example, Lindner

found typical values for O, of about 2°to 5 °below 80 km, and 10°to 15 *above. These results are

consistent with later observations using beam-swinging techniques (HOCKING, 1979). The

method has not been greatly utilized, however, and deserves further attention.

5.1.3 Spectral methods

It was noted earlier in regard to discussions about extraction of turbulence from spectra that

in many cases the main contribution to the spectral width was spectral-broadening due to the

finite width of the polar diagram of the radar beam. At the time this was a nuisance, but now

it can be turned to good effect. The effective polar diagram is the product between the polar

diagram of the radar and the backscatter polar diagram of the scatterers. As seen in appendix

A, if O°b is the e -1 half-width of the effective polar diagram (ie the product of the backscatter

polar diagram and the radar beam polar diagram) then

sin-_Osb = sin-ZOo + sin-SOs (66)

But from equation (17) the beam-broadening of the spectral width is

f_b = 2(1"0) 1 Vhor 101-, (67)

The total spectral half-power-half-width is given approximately by

f_ = f_,b+ .f]t,a (68)

if we ignore the contribution due to wind-shear. (This last term can in fact reduce f½, but it

is usually fairly small.) Then we can apply our experimentally measured spectral widths to

place upper limits on 8,. That is, if we calculate

Ok = -__ f½ (69)
, 2 1Vh_, I
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then this is a usful upper limit to O½,ll, the half-power half-width of the combined polar
diagram of the scatterers and the radar beam. In the case that it can be shown that ]_b :_

ff_c_, as often happens, then 0_ is a good estimate of 0_1I. Then 0oh = O_elf/Iv_, and

equation (66) can be used to deduce 0,. In the special case that a relatively wide beam is
used, so that 0o >> 8s, 0,b = 0°.

The above principles have been used by HOCKING et al.,(1986), and HOCKING (1987a, b)
to make estimates of backscatter polar diagram half-widths. The method of using fading times
as a crude indicator of "specularity" , as done by for example RASTOGI and ROETTGER

(1982) may be also considered as a primitive special case of this method, although that proce-
dure does not really pay proper consideration to the role of the mean wind in determining the

fading time through beam-broadening. More recently WOODMAN and CHU (1989) have used
similar techniques, but rather than just using the spectral width and assuming Gaussian polar

diagrams as done here, they have used the whole spectrum and the one-to one correspondence
between the polar diagram of backscatter and the spectrum to determine additional detail
about the actual shape of the polar diagram of backscatter and so the irregularities them-
selves. Woodman and Chu also used a wide beam, but it should be noted that this procedure

assumes azimuthal symmetry.

A procedure like this is very useful if there are several types of scatterers in the beam. For
example, if scatterers and reflectors described by models A and B both exist in the same radar
volume, the spectrum will not be Gaussian, but will comprise two portions; a narrow central

component corresponding to the specular reflectors, and a wider component corresponding to
the "model A" scatterers. As it turned out, WOODMAN and CHU (1989) saw no evidence of
"model B" reflectors, but this is likely to be because their spectra were averaged over 45 min,

whilst specular reflectors, if they exist, are likely to be relatively short-lived.
Indeed, evidence for the coexistence of the two types of scatterers coexisting in the same

region of space has been given by HOCKING (1987a), and is illustrated in the following

diagram. The data are presented because they show yet another useful means of determining
information about the scatterers, as well as making the point that both specular reflectors and
turbulent scatterers do seem to coexist.

These data were obtained using a hybrid of the beam-swinging and spectral approaches.
Two beams were used, one vertical and one off-vertical. A strong signal of very narrow width

was seen with the vertical beam, but nothing else, whereas on the off-vertical beam two
separate contributions to the spectra were seen; first a broader component corresponding to

isotropic bakscatter received through the main lobe of the beam, and secondly the same narrow
spectrum as seen with the vertical beam. Clearly the second component was due to leakage
from overhead, and comparison of the powers in the specular component observed with the
narrow beam and the more isotropic component show that the specular component is some

70 times stronger. The model discussed in Fig. 12 may apply in some cases, but certainly
does not here, as it is unlikely that the anisotropic scatterers at the layer edges would be so

much stronger than their counterparts in the centre of the layer. Thus this figure does indeed
suggest the coexistence of both models, whilst at the same time demonstrating yet another
useful technique to determine the aspect-sensitivity and nature of the scatterers.
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5.1.4 Amplitude distributions

The preceding techniques have been designed to make measurements of 00, and are particularly

powerful if model A is valid. However, there is a useful method which allows the validity of

model B to be tested, and which has been used with varying degrees of success in recent

years. This is the use of amplitude distributions (e.g. VON BIEL, 1971, 1981; VINCENT and

BELROSE, 1978; ROETTGER, 1980a; RA_TOGI and HOLT, 1981; SHEEN et. al., 1985;

HOCKING, 1987b; KUO et al., 1987 amongst others).

There are many variations of this technique, but only the simplest will be discussed here,

in order to illustrate the method. If scatter is due to an ensemble of roughly similar scatterers,

as might occur in a turbulent patch, then the amplitudes of the resultant distribution will

have a so-called "Rayleigh distribution" (RAYLEIGH, 1894). If, however, there is also a much

stronger single scatterer in addition to these weaker scatterers, the distribution changes to a so-

called "Rice distribution" (RICE, 1944, 1945). The figure below shows how these distributions

change as the specular component is made larger. Each curve is parameterized by a parameter

called the "Rice parameter", which is a measure of the strength of the specular component

divided by the RMS "random" component. For a Rayleigh distribution, this parameter is zero.
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Rice distributions in steps of _ = 0.5 as a function of

v = z/a = _/2" z/k, where z = received amplitude, k = RMS
scattered power and cr = the standard deviation of each of

the inphase and quadrature components of the scattered

signal. These plots may also be regarded as the distribu-

tion of amplitudes for a constant RMS scatter component

k = ,,/2 and varying specular component.

Thus in principle, by making histograms of the amplitudes of the received signal and com-
paring them to the above curves, it is possible to determine if there is a single dominant
scatterer within the radar beam. More complex variations on this process exist, including

looking at the phase distributions (e.g. ROETTGER, 1980a) and using more complex distri-
butions such as the Nakagami-M distribution (e.g. SHEEN et al., 1985; KUO et al., 1987).

The latter generalization is particularly useful if the specular component has undulations on
it and causes focussing and de-focussing of the reflected radiation.

Unfortunately, as with almost all techniques, complications exist. For example, if there
is more than one specular reflector in the radar volume, then the amplitude distribution

changes, and if there are more than about 4, the distribution begins to look almost Rayleigh-
like again. Furthermore, if one uses relatively short data sets (less than about 10 rains of data),
statistical effects can cause a set of scatterers which should produce a Rayleigh distribution to

produce a Rice distribution, which wrongly suggests the existence of a specular component.
To properly utilize the so-called Rice parameter one must look at the distributions of the Rice

parameter itself; the calculation of several non-zero Rice parameters is not in itself evidence
for a non-Rayleigh distribution. The correct interpretation of the Rice parameter is discussed

by HOCKING, (1987b).
Nevertheless, the process can be useful, as illustrated by the many authors listed previously.

An interesting example is shown in fig.17 below, which was taken from HOCKING (1987b).
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This diagram shows the height profile of the mean Rice parameter (< a >) as a function of

height measured with the SOUSY radar, using a vertical beam and two off-vertical beams, one

directed at 7°off-vertical to the North, and one at 7°off-vertical to the East. Note the increase

in < a > just above the tropopanse, when observing with the vertical beam, indicating the

presence of a few dominant reflectors within the radar volume in the stratosphere. Notice also

that there is still a non-P_yleigh character to the scattering process on the North beam, but

on the East beam the mean Pdce parameter is fairly constant with height and consistent with

a P_yleigh process.

One possible interpretation of these results is that the scatterers _e elongated in the

Eastward direction compared to the Northward (ie aligned along the mean wind vector, which

was predominately Eastward at the time). If such an elongation existed, then the polar

diagram of backscatter would be narrower in the East-West direction, and so the half-power

half-width may be substantially less than 7°and not show an effect on the 7°off-vertical beam;

only the effects of the turbulent scatter are seen. In the North-South direction, the polar

diagram would be wider, and some contribution from these scatterers may still show.

Alternatively, one might invoke model B, and speculate that flat specular reflectors exist

with small wrinkles, but that there were a wider range of Fourier components in the North-

South direction, causing a broadened polar diagram in this direction.

It is clear from the above techniques that there are a multitude of techniques available to

enable the nature of the scatterers to be understood. However, there are still many unresolved
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issues about these scatterers, and the application of the above procedures is to be actively en-

couraged, in the hope of eventually fully understanding the scattering and reflecting processes,

and the parameters which describe them. The importance of knowing these characteristics has

already been stressed.

6 Less easily determined target parameters

The discussion so far has concentrated on parameters which can be inferred fairly directly

from the radar measurements. There are, however, other parameters which can be deduced

with a little extra work. For example, VINCENT and REID (1983) showed how, by using

two off-vertical beams, measurements of the gravity-wave and turbulent momentum fluxes

could be calculated. The momentum flux is not actually a target parameter, end so has not

been discussed here greatly, but it nevertheless is a parameter which affects the targets, and

knowledge about is most desirable. Another example is the Brunt-Vaisala frequency. Normally

this is very difficult to measure, but if the mean winds are light, then spectral analysis of the

time series of velocity measurements can be used to measure the Brunt-Vaisala frequency.

That is, the spectrum shows a cutoff at the Brunt-Vaisala frequency, and this in turn allows

determination of the temperature gradient (e.g. ROETTGER, 1980b).

DEWAN (1981) and WOODMAN and RASTOGI (1984) have shown how careful measure-

ments of the temporal and spatial distribution of the occurrence of thin turbulent layers can

be used to infer the mean turbulent diffusion coefficient in the stratosphere, as distinct from

the diffusion coefficient within a turbulent layer (the latter can be determined from equation

(38)).
High resolution studies can also be used to infer something about the nature of the scat-

terers; for example ROETTGER and SCHMIDT (1979) used a resolution of 30m to observe

cat's-eye structures in the stratosphere, confirming that at least some of the observed turbulent

layers are due to dynamical instability. REID et al. (1987) have observed similar features in

the mesosphere. Other studies which allow information about the nature of the scatterers to

be obtained include, for example, those by KLOSTERMEYER and RUESTER (1980, 1981),

and YAMAMOTO et al. (1987, 1988); in these studies relations between power bursts and

buoyancy-wave oscillations were investigated.

By using radars in conjunction with other instruments, further information can be deduced.

A good example is the use of acoustic waves to act as reflectors for VHF radar waves, as done

with the RASS system at the MU radar in Japan. With this instrument, it is possible to

measure temperature profiles in the atmosphere. The use of such hybrid systems in the future

is likely to be of great benefit.

Of course, by using long time series of velocities, one can determine other characteristics

of the scattering region, llke the buoyancy wave spectra, tidal amplitudes, planetary wave

amplitudes, and a whole host of dynamical quantities. In a broad sense one might like to

think of these as "target parameters" of a sort, but these are beyond the scope of the current

paper.

7 Conclusions

The main parameters which can be deduced directly from radar observations of the atmosphere

have been discussed. It is clear that it is not possible to make best use of the observations

without better understanding the scattering process, and the ways in which the scatterers are
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formed. Methods for deducing more information about the scatterers have been described, as

well as some procedures by which routine information like wind speeds, turbulence intensities,

and scatterer shapes, can be deduced. The need for more observations of this sort is pressing.

Appendix A: Effective pointing angle

and beamwidth for anisotropic scatter

As pointed out by ROETTGER (1981), an anisotropy in the scattering mechanism alters
the effective pointing angles for an off-vertical radar. Such anisotropy also alters the effec-
tive beamwidth and this is important for the work in this paper. Let the polar diagram of
hackscatter for the scatterers be

P,($) o( e-_

and the two way polar diagram for a vertically pointing radar be (hl)

Pa(O) o_,-_ (A2)

Then for a radar pointed off-vertical by angle 8T in the azimuth direction ¢ = 0, the polar
diagram at angle (/9, ¢) is

PaT(O, ¢) o( e{ - [(°'"°''"*)*+(''''*'*-''''r)2]l'- t ..2,o- j j. (h3)

(Note that the expression exp[-sin2(O - Or)/sin_Oo) (which has in the past been used to
represent a tilted beam) is NOT a good approximation, as that describes an annulus around

the zenithal point at a mean angle 0r.) When the effects of the polar diagram of the scatterers
are included, the effective polar diagram is the product of (A1) and (A3). This is a maximum
when the derivative of the exponent with respect to sin# is zero, or at

si"_0° ]_,sinO.ll = sinOr 1 + sin20o ] (A4)

For 0o, O° less than about 10°, this approximates to

sinO.1! = sinOr [1 + o2,1

Thus the effective pointing angle is given by (A4), and horizontal wind speeds will be

underestimated by the factor
F O--o2].R1= /1+ (A5)

0._j

ifone uses say equation (12)without any correction.This isin factonly approximate - to

properlydeterminethe actualmeasured radialve]ocity,equation (35)of HOCKING (1983a)

shouldhe integrated(includingan aspectsensitivityforthescatterers)toproducetheexpected

power spectrum; thiswillnot have a maximum at the exact pointdescribedby (A4),but it
will be close.

The half-width of the effective beam can be found by finding the angles (0, ¢) where the
effective polar diagram [i.e. the product of (A1) and (A3)] falls to one half of the value at

(0, ¢) = (8_11, 0). Consider only the line _b= 0. Then the product of (A1)and (A3) gives

el. [ .,.2oo .._20. J j (A6)
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and we seek the two angles (6_)1 2 where this fails to one half of the value at B = 0,ii. Some

algebraic manipulation soon sl_ows that a quadratic in sin8 results, which has two roots at

(O_)t,2 = sinO,l! 4- l_-_.sinOo 1 + 02j (A7)

(for 00, 00 less than about 10°), and this shows that the effective half-power half-width is

[R_= 1 + _j (AS)

times the haif-width of the radar alone. Notice that this ratio is independent of the radar tilt

direction, at least out to angles of 10-15 ° .

Equivalently, we can write that the effective hail-power half-width 8c11½ obeys the relation

sin-'(Oe11½)= sin-2(o;) + sin-2(O°½), (A9)

where 0x isthe halfpower halfwidth ofthe radarbeam and #o] isthe haif-powerhalf-width

ofthe backscatterpolardiagram ofthe scatterers.

Now letuse addresstheissueofhow the power receivedby the radarchangesasa function

oftiltangle0T. The power receivedby the verticalbeam can be found by integratingover

the beam, and fora Gaussian polardiagram thisintegralisproportionalto (0ell½)2 where

#_11½isthe effectivehalf-powerhalf-widthofthe combined polardiagrams of the radar and
the scatterers.When the radarbeam isphased to look at an off-verticaiangle6T, the peak

power willbe reducedby a factor

fl = e -o

because the peak returned power is returned from 0_Ii and not OT, and then by a further factor

bacause of the reduction in power due to the polar diagram of backscatter of the scatterers.
Thus the total received power will be proportional to the product of fl and f2, and then

multiplied by the effective beam half-power haif-width squared. Thus the received power on
the off-verticai beam divided by that received on the vertical beam is equal to

or

 (0T) _tsy=e,,,{OT/'_ + .J (AI0)

Note that this final expression corrects an error in the originai derivation of HOCKING et

ai, (1986), in which the factor f2 was neglected.
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